

Wide-field Infrared Survey Explorer (WISE)

Solar System Science

- Mid-IR wavelengths near peaks of black body curves.
- Analogies with IRAS in 1983, but hundreds of times more sensitive.
- Detect both known and previously unknown...
 - Asteroids.
 - Comets.
 - Comet nuclei.
 - Zodiacal dust bands.
 - Cometary debris trails, etc...?
- Draw inferences about physical properties & processes.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Wide-field Infrared Survey Explorer (WISE)

Solar System Science

- Science Team members w/ planetary science interests:
 - Ned Wright (PI), Amy Mainzer (NEOWISE PI), Russ Walker, Bob McMillan, Roc Cutri.
- "NEOWISE" Enhancements:
 - Rapid reporting.
 - Archival studies.
 - Additional NEOWISE Science Working Group members: James Bauer, Tommy Grav, Rob Jedicke, Dave Tholen.

Detectability of Asteroids by WISE

Simulated WISE Detections of Asteroids

- Color encodes time of obs., early to late.
- Interval simulated
 = 2004 Dec 27 2005 Jan 7.
- Each dot is a detectable single frame observation by WISE at 12 microns of an asteroid in Bowell's ASTORB list.

Known Asteroids to be Detected by WISE

- ~20,000 detections per day in simulations. – Several $\times 10^5$ tracklets @ 12 & 22 μ m.
- Most main belt asteroids ≥ 4 km in diameter.
- ~10-20 detections of NEOs per day.
- Net hundreds of NEOs w/ diams. \geq 300 m.

Flux Near bb peak Gives Better Diameters

• Visible-light albedos range from 0.02 – 0.63, making size ambiguous.

- IR flux approximates bolometric luminosity @ these temperatures.
- Range in IR emission due to absorbed and reradiated sunlight << range in visible brightness for most albedos.
- With both IR & visible data the diameter *and* albedo are well determined.

Thermal IR Fluxes from Known Asteroids

- Accuracies of diameters *via* thermal models: $\pm 3-5\%$ with detections @ 12 & 22 μ m;
 - $-\pm 10\%$ with single-band detections;
 - -Neglecting unknown rotation axis, etc.
- Vmags from ground-based obs. \rightarrow albedos.
- IR lightcurves \rightarrow shapes.

Diameters & Albedos

- •~100,000 MBAs & ~300 NEOs.
- Albedo vs. family; albedo vs. dist.
- Dark →Inactive comets? main belt comets? Look for trails and/or tails?
- Bright → Rotational modulation? Family origin?
- Yarkovsky force.

Yarkovsky Effect & Dinosaurs

- Bottke *et al.* (2007, Nature, 449, 48)
- Yarkovsky force is induced by asymmetric thermal reradiation from rotating asteroids.
- Collision 160 Myr ago → Baptistina family; Yark. pushed orbits into resonant zones, scattered into Earth crossing orbit, then BOOM! 65 Myr ago.
- Revisits during mission on AM & PM sides can measure Yark. force for hundreds of Baptistina members.

NEOWISE: *Ab initio* Survey of Asteroid Populations

- Uniform detection of knowns & unknowns.
- Documented & verified ...
 - Flux sensitivity
 - Motion sensitivity
 - Sky coverage
- Quantifiable efficiencies & biases → debiased description of asteroid populations.

NEOWISE Survey Expectations

- Good diameters for ~100,000 asteroids.
 –Including 100's of NEOs.
- Avoid bias vs. dark asteroids.
- Estimate numbers & size dist'ns of:
 - -MBAs/Families.
 - -NEOs.
 - -PHAs...any dark impactors?

Ground-Based NEO Followup

- NEOWISE proposes to detect & report 100's of previously unknown NEOs.
- Process & post to MPC in $\leq 10^{d}$.
- Detection tracklets long & dense → decent preliminary orbits.
- Search $\sim 3 \text{ deg}^2$ to V ~ 23 to recover.

Mid Infrared Observations of Comets

Diameters and Albedos of Comet Nuclei

- 12 & 22 micron bands \rightarrow thermal size estimates.
- 3.4 & 4.6 micron bands \rightarrow albedos or upper limits.
- Sizes and albedos of ...
 - Comet nuclei in general.
 - Nuclei of Jupiter-family comets beyond 4.25 AU.
 - -Oort Cloud (OC) comet nuclei?
- Get JFC size distribution.
 - Compare OC nuclei dist'n w/ JFC nuclei dist'n.

Zodiacal Dust Bands

Should see a few forming dust bands due to the disruption of asteroids.

Determine source(s) and age(s).

Relative contributions of dust to the cloud from asteroids and from comets.

Debris Trail of 22P/Kopff

RELATIVE POSITION (arcsec)

Comet Debris Trails

- 29 comets w/ debris trails and/or meteor streams.
 - Additional ~35-52 comets whose trails have not yet been detected.
- Fainter trails than Spitzer through single frame coaddition in wider FOV and number of revisits.
- Model & compare with prior detections.
- Estimate mass loss *via* trails & replenishment of zodiacal dust cloud.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Wide-field Infrared Survey Explorer (WISE)

Precedent and Anticipations

- In 1983 IRAS discovered:
 - -Comets are snowy dirtballs, not dirty snowballs.
 - -The solar system is dustier than was thought.
- WISE will have > 6 mag greater sensitivity.
- Exploration doesn't get any better than this, folks.