SPACEWATCH®
Astrometry of Asteroids
and Comets with the Bok
2.3-m and Mayall 4-m
Telescopes.

Poster 414.17: AAS 46th Mtg of the DPS, 2014 November

J. V. Scotti¹, R. S. McMillan¹, and J. A. Larsen².

URL: http://spacewatch.lpl.arizona.edu ¹University of Arizona; ²U.S. Naval Academy

Photo of 4-m Mayall Telescope: NOAO/AURA/NSF

Why we get time on bigger telescopes

• Improve knowledge of the **orbits and magnitudes** of high priority classes of Near
Earth Objects (NEOs) and other small bodies
in need of recovery that cannot be reached
with the Spacewatch 1.8-m telescope.

2012 HG31 (APO) on 2014 Jan 10, R=24.2

2.3-meter Bok Telescope of Steward Observatory on Kitt Peak

90Prime mosaic camera:

FOV ~1 deg²

0.45"/pixel.

V mag $\lim t \approx 24$.

~ 24 nights per year.

~3 objects per hour.

3.5-m telescope of Wisconsin-Indiana-NOAO (WIYN) on Kitt Peak, Az.

Used in 2010 to recover selected faint NEOs discovered by the Near-Earth Object Wide-field Infrared Survey (NEOWISE) spacecraft mission.

Photo: NOAO/AURA/NSF; copyright WIYN Consortium, Inc., all rights reserved.

Targets

- NEOs with virtual impact solutions.
- Future targets of radar.
- Orbits & albedos suggesting cometary activity.
- Potential destinations for spacecraft (NHATS list).
- Returning NEOs w/ diameters determined by NEOWISE.
- Faint Potentially Hazardous Asteroids (PHAs).

Capabilities

Faintest V mag observed so far = 24.4.

Smallest elongation angle observed = 46 deg.

Output, 2010-2014

The MPC has accepted from us:

- 1316 lines of astrometry on
 - -207 different NEOs.
 - including 84 different PHAs.
 - -343 observations of PHAs with V>=22.

Calendar Arc Extensions

- Average calendar span extension on large PHAs (with H<=17.75) is 184 days, which is 2x longer than the next most effective observing station.
- Extend span of calendar coverage on PHAs an average of 3.8x.
- For 38 of the 72 PHAs we added another observed opposition.

Reducing Uncertainties

- Analysis of our astrometry by MPC (G. Williams 2014 private communication).
- We've been reducing uncertainties of orbital elements an average of a **factor of 6**.

• Reducing the uncertainty of time of perihelion passage T an average of a factor of 19.

PHA Orbital Element Improvement

- Table 1. Effects of observations by Spacewatch COD ^695, 2010 Jun 2014 May on Uncertainties of PHA Orbital Elements . Analysis by MPC.
- f(parameter) = uncertainty before / uncertainty after.

	% Span	f(T)	f(Peri)	f(e)	f(Node)	f(Incl)	f(q)
Minima Maxima	0.00 4027.27		0.90 11.14				0.83 13.44
Average	s 384.66	19.29	2.38	6.89	2.95	3.37	3.57

Acknowledgements

- NASA's NEO Observation Program.
- The IAU's Minor Planet Center.
- JPL's NEOWISE Team led by A. K. Mainzer.
- JPL's NEO Office.
- Kitt Peak National & Steward Observatories.
- The U. S. Naval Academy.